5 research outputs found

    New Areas in Fuzzy Application

    Get PDF

    Economic Applications for LED Lights in Industrial Sectors

    Get PDF
    After the Introduction, which discuss the main advantages and disadvantage of LED from Economics angle, the entire Chapter is presented in three sections. The first section discusses the economic benefits of replacing different types and rating of outdoor HID lights, typically installed in an industrial plant, with LED lighting. The section determines important economic indicators to evaluate direct and indirect benefits that can be achieved from using LED lights. In second section an efficient, safe and cost effective design to automate LED lighting system used for long roads with low-traffic is provided. The section provides smart control using image recognition for cost saving of road lighting operation and gives economic analysis for this lighting system. In third section, design of intelligent daylight utilization to achieve efficient indoor lighting intensity control for LED lights that are used in industrial building is provided. Comprehensive evaluation of the lighting system economics is discussed

    Measurement of single-diffractive dijet production in proton–proton collisions at √s=8Te with the CMS and TOTEM experiments

    No full text
    Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss ξ and the four-momentum transfer squared t. Both processes pp→pX and pp→Xp, i.e. with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton–proton collisions at s=8Te during a dedicated run with β∗=90m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5nb-1. The single-diffractive dijet cross section σjjpX, in the kinematic region ξ< 0.1 , 0.03<|t|<1Ge2, with at least two jets with transverse momentum pT>40Ge, and pseudorapidity | η| < 4.4 , is 21.7±0.9(stat)-3.3+3.0(syst)±0.9(lumi)nb. The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of ξ, is presented as a function of x, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for x values in the range - 2.9 ≤ log 10x≤ - 1.6 , is R=(σjjpX/Δξ)/σjj=0.025±0.001(stat)±0.003(syst), where σjjpX and σjj are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons. © 2020, CERN for the benefit of the CMS and TOTEM collaborations

    Measurements of triple-differential cross sections for inclusive isolated-photon+jet events in p p collisions at √s=8TeV

    No full text
    Measurements are presented of the triple-differential cross section for inclusive isolated-photon+jet events in p p collisions at s=8 TeV as a function of photon transverse momentum (pTγ), photon pseudorapidity (ηγ), and jet pseudorapidity (ηjet). The data correspond to an integrated luminosity of 19.7fb-1 that probe a broad range of the available phase space, for | ηγ| < 1.44 and 1.57 < | ηγ| < 2.50 , | ηjet| < 2.5 , 40<pTγ<1000GeV, and jet transverse momentum, pTjet, > 25GeV. The measurements are compared to next-to-leading order perturbative quantum chromodynamics calculations, which reproduce the data within uncertainties. © 2019, CERN for the benefit of the CMS collaboration
    corecore